THE INFINITY BLOCKCHAIN

HEASMOTO FUKU KANJISAN
“A native of the World”

VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

VOLEREUM

A Peer-to-Peer Utility &
Electronic Cash System

Heasmoto Fuku Kanjisan
HFKanjisan@volereum.com
www.volereum.org

Introduction By: HEASMOTO FUKU KANJISAN - A native of the World

On a global scale, there is no doubt that Bitcoin has ushered in the greatest financial
overhaul that could have ever been imagined. The implementation of Bitcoin’s
“decentralized payment” process has succeeded where in contrast, the adaptation of a
“centralized payment” system has failed three times in the United States of America and
is on the verge of failing a fourth time.

US Interest rates and US monetary policies are artificial means of trying to control an
economy’s natural forces. Together, they quite simply undermine the “natural” market
forces and result in price increases across all market sectors. As inflation increases the
value of a “single” fiat currency, the US dollar, erodes in value. In reality, it takes “4000”
of today’s US dollars to purchase what “1” US dollar could 60 years ago. That single US
fiat currency, the US dollar, no longer has or can demand the buying power or
international respect that it once commanded.

The Problem

Centralized banking has failed throughout the course of human history. And it is doomed
to fail again. Unless a system can be implemented that takes out the impulses or guidance
of human fallacy and error, financial crises will continue to be orchestrated by an agenda
that benefits through the initiative of “crises.” In addition money laundering, as it is called,
takes place on a 24 hour basis within the factions of government entities that intentionally
deceive and lie to meet the ends of their hidden agendas. The WHITE elephant in the
room is centralized banking.

The Solution

The only means to address the WHITE elephant in the room is to implement a
decentralized payment system that no longer relies on a third party intermediary, that is
paid a fee to verify a P2P process. Bitcoin has ushered in a P2P process oriented solution
that can quell the thirst of the WHITE elephant.

“What started out as $.0000008 buys 1 Bitcoin has now transformed into $50,000+ buys
1 Bitcoin.”

Now that does signify the “FAITH AND TRUST” in an unencumbered decentralized
system.

2|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

THE BITCOIN IMPLEMENTATION PROTOCOL

Abstract. A purely peer-to-peer version of electronic cash would allow online payments
to be sent directly from one party to another without going through a financial institution.
Digital signatures provide part of the solution, but the main benefits are lost if a trusted
third party is still required to prevent double-spending.

The developers of Bitcoin proposed a solution to the double-spending problem using a
peer-to-peer network. The network timestamps transactions by hashing them into an
ongoing chain of hash-based proof-of-work, forming a record that cannot be changed
without redoing the proof-of-work. The longest chain not only serves as proof of the
sequence of events witnessed, but proof that it came from the largest pool of CPU power.
As long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The network
itself requires minimal structure. Messages are broadcast on a best effort basis, and
nodes can leave and rejoin the network at will, accepting the longest proof-of-work chain
as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions
serving as trusted third parties to process electronic payments. While the system works
well enough for most transactions, it still suffers from the inherent weaknesses of the trust
based model. Completely non-reversible transactions are not really possible, since
financial institutions cannot avoid mediating disputes. The cost of mediation increases
transaction costs, limiting the minimum practical transaction size and cutting off the
possibility for small casual transactions, and there is a broader cost in the loss of ability
to make non-reversible payments for non- reversible services. With the possibility of
reversal, the need for trust spreads. Merchants must be wary of their customers, hassling
them for more information than they would otherwise need. A certain percentage of fraud
is accepted as unavoidable. These costs and payment uncertainties can be avoided in
person by using physical currency, but no mechanism exists to make payments over a
communications channel without a trusted party.

What is needed is an electronic payment system based on cryptographic proof instead of
trust, allowing any two willing parties to transact directly with each other without the need
for a trusted third party. Transactions that are computationally impractical to reverse would
protect sellers from fraud, and routine escrow mechanisms could easily be implemented
to protect buyers. In this paper, we propose a solution to the double-spending problem
using a peer-to-peer distributed timestamp server to generate computational proof of the
chronological order of transactions. The system is secure as long as honest nodes
collectively control more CPU power than any cooperating group of attacker nodes.

3|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

2. Transactions

We define an electronic coin as a chain of digital signatures. Each owner transfers the
coin to the next by digitally signing a hash of the previous transaction and the public key
of the next owner and adding these to the end of the coin. A payee can verify the

signatures to verify the chain of ownership.

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key

'

e Than
S| S|
Owner Q's Owner 1's Owner 2's
Signature v Signature v Signature
o o«
e® o
Owner 1's Owner 2's Owner 3's
Private Key Private Key Private Key

The problem of course is the payee can't verify that one of the owners did not double-
spend the coin. A common solution is to introduce a trusted central authority, or mint, that
checks every transaction for double spending. After each transaction, the coin must be
returned to the mint to issue a new coin, and only coins issued directly from the mint are
trusted not to be double-spent.

The problem with this solution is that the fate of the entire money system depends on the
company running the mint, with every transaction having to go through them, just like a
bank. We need a way for the payee to know that the previous owners did not sign any
earlier transactions. For our purposes, the earliest transaction is the one that counts, so
we don't care about later attempts to double-spend. The only way to confirm the absence
of a transaction is to be aware of all transactions. In the mint based model, the mint was
aware of all transactions and decided which arrived first. To accomplish this without a
trusted party, transactions must be publicly announced [1], and we need a system for
participants to agree on a single history of the order in which they were received. The
payee needs proof that at the time of each transaction, the majority of nodes agreed it
was the first received.

4|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

3. Timestamp Server

The solution we propose begins with a timestamp server. A timestamp server works by
taking a hash of a block of items to be timestamped and widely publishing the hash, such
as in a newspaper or Usenet post [2-5]. The timestamp proves that the data must have
existed at the time, obviously, in order to get into the hash. Each timestamp includes the
previous timestamp in its hash, forming a chain, with each additional timestamp
reinforcing the ones before it.

_L Hash _: Hash >
Block Block
ltem ltem Item Item

4. Proof-of-Work

To implement a distributed timestamp server on a peer-to-peer basis, we will need to use
a proof-of-work system similar to Adam Back's Hashcash [6], rather than newspaper or
Usenet posts. The proof-of-work involves scanning for a value that when hashed, such
as with SHA-256, the hash begins with a number of zero bits. The average work required
is exponential in the number of zero bits required and can be verified by executing a single
hash.

For our timestamp network, we implement the proof-of-work by incrementing a nonce in
the block until a value is found that gives the block's hash the required zero bits. Once
the CPU effort has been expended to make it satisfy the proof-of-work, the block cannot
be changed without redoing the work. As later blocks are chained after it, the work to
change the block would include redoing all the blocks after it.

Block Block

= Prev Hash MNonce & Prev Hash |Nonce|

Tx Tx

Tx| Tx|||

The proof-of-work also solves the problem of determining representation in majority
decision making. If the majority were based on one-IP-address-one-vote, it could be
subverted by anyone able to allocate many IPs. Proof-of-work is essentially one-CPU-
one-vote. The majority decision is represented by the longest chain, which has the
greatest proof-of-work effort invested in it. If a majority of CPU power is controlled by
honest nodes, the honest chain will grow the fastest and outpace any competing chains.

5|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

To modify a past block, an attacker would have to redo the proof-of-work of the block and
all blocks after it and then catch up with and surpass the work of the honest nodes. We
will show later that the probability of a slower attacker catching up diminishes
exponentially as subsequent blocks are added. To compensate for increasing hardware
speed and varying interest in running nodes over time, the proof-of-work difficulty is
determined by a moving average targeting an average number of blocks per hour. If
they're generated too fast, the difficulty increases.

5. Network
The steps to run the network are as follows:

1) New transactions are broadcast to all nodes.

2) Each node collects new transactions into a block.

3) Each node works on finding a difficult proof-of-work for its block.

4) When a node finds a proof-of-work, it broadcasts the block to all nodes.

5) Nodes accept the block only if all transactions in it are valid and not already
spent.

6) Nodes express their acceptance of the block by working on creating the next
block in the

chain, using the hash of the accepted block as the previous hash.

Nodes always consider the longest chain to be the correct one and will keep working on
extending it. If two nodes broadcast different versions of the next block simultaneously,
some nodes may receive one or the other first. In that case, they work on the first one
they received, but save the other branch in case it becomes longer. The tie will be broken
when the next proof- of-work is found and one branch becomes longer; the nodes that
were working on the other branch will then switch to the longer one.

New transaction broadcasts do not necessarily need to reach all nodes. As long as they
reach many nodes, they will get into a block before long. Block broadcasts are also
tolerant of dropped messages. If a node does not receive a block, it will request it when
it receives the next block and realizes it missed one.

6. Incentive

By convention, the first transaction in a block is a special transaction that starts a new
coin owned by the creator of the block. This adds an incentive for nodes to support the
network, and provides a way to initially distribute coins into circulation, since there is no
central authority to issue them. The steady addition of a constant of amount of new coins
is analogous to gold miners expending resources to add gold to circulation. In our case,
it is CPU time and electricity that is expended.

The incentive can also be funded with transaction fees. If the output value of a transaction
is less than its input value, the difference is a transaction fee that is added to the incentive
value of the block containing the transaction. Once a predetermined number of coins have

6|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

entered circulation, the incentive can transition entirely to transaction fees and be
completely inflation free.

The incentive may help encourage nodes to stay honest. If a greedy attacker is able to
assemble more CPU power than all the honest nodes, he would have to choose between
using it to defraud people by stealing back his payments, or using it to generate new
coins. He ought to find it more profitable to play by the rules, such rules that favour him
with more new coins than everyone else combined, than to undermine the system and
the validity of his own wealth.

7. Reclaiming Disk Space

Once the latest transaction in a coin is buried under enough blocks, the spent transactions
before it can be discarded to save disk space. To facilitate this without breaking the block's
hash, transactions are hashed in a Merkle Tree [7][2][5], with only the root included in the
block's hash. Old blocks can then be compacted by stubbing off branches of the tree. The
interior hashes do not need to be stored.

Block Block
Block Header (Block Hash) Block Header (Block Hash)
| PrevHash | | Monce | Prev Hash | Monce |
Root Hash Root Hash
’zf \‘.\‘ ;/f \\\
I A N d I
i Hasho Hash23 Hash01 | Hash23 :
4 n 4 » 4 »
VAR L. N /
Hash0 Hash1 Hash2! ‘Hash3 Hash2| Hash3
bttt
™| [Tx1 | [T2| |[Ta] Tx3
Transactions Hashed in a Merkle Tree After Pruning Tx0-2 from the Block

A block header with no transactions would be about 80 bytes. If we suppose blocks are
generated every 10 minutes, 80 bytes * 6 * 24 * 365 = 4.2MB per year. With computer
systems typically selling with 2GB of RAM as of 2008, and Moore's Law predicting current
growth of 1.2GB per year, storage should not be a problem even if the block headers
must be kept in memory.

8. Simplified Payment Verification

It is possible to verify payments without running a full network node. A user only needs to
keep a copy of the block headers of the longest proof-of-work chain, which he can get by
querying network nodes until he's convinced he has the longest chain, and obtain the
Merkle branch linking the transaction to the block it's timestamped in. He can't check the
transaction for himself, but by linking it to a place in the chain, he can see that a network

7|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

node has accepted it, and blocks added after it further confirm the network has accepted
it.

Langest Proof-of-Waork Chain

Block Header Block Header Block Header

I-| Prev Hash | Nonce | | h-| Prev Hash Monce —® Prev Hash | Monce -
Merkle Root] | Merkle Root | Merkle Root |
A
_f’/ "-.\
Hash01 Hash23

»
! Y Merkle Branch for Tx3

[Hashz | Hashs |

| T |

As such, the verification is reliable as long as honest nodes control the network, but is
more vulnerable if the network is overpowered by an attacker. While network nodes can
verify transactions for themselves, the simplified method can be fooled by an attacker's
fabricated transactions for as long as the attacker can continue to overpower the network.
One strategy to protect against this would be to accept alerts from network nodes when
they detect an invalid block, prompting the user's software to download the full block and
alerted transactions to confirm the inconsistency. Businesses that receive frequent
payments will probably still want to run their own nodes for more independent security
and quicker verification.

9. Combining and Splitting Value

Although it would be possible to handle coins individually, it would be unwieldy to make a
separate transaction for every cent in a transfer. To allow value to be split and combined,
transactions contain multiple inputs and outputs. Normally there will be either a single
input from a larger previous transaction or multiple inputs combining smaller amounts,
and at most two outputs: one for the payment, and one returning the change, if any, back
to the sender.

Transaction

> n Qut | -

= In | -~ | -
s

8|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

It should be noted that fan-out, where a transaction depends on several transactions, and
those transactions depend on many more, is not a problem here. There is never the need
to extract a complete standalone copy of a transaction's history.

10. Privacy

The traditional banking model achieves a level of privacy by limiting access to information
to the parties involved and the trusted third party. The necessity to announce all
transactions publicly precludes this method, but privacy can still be maintained by
breaking the flow of information in another place: by keeping public keys anonymous. The
public can see that someone is sending an amount to someone else, but without
information linking the transaction to anyone. This is similar to the level of information
released by stock exchanges, where the time and size of individual trades, the "tape", is
made public, but without telling who the parties were.

Traditional Privacy Model

Trusted |
Third Party

Transactions }—F‘ Public

As an additional firewall, a new key pair should be used for each transaction to keep them
from being linked to a common owner. Some linking is still unavoidable with multi-input
transactions, which necessarily reveal that their inputs were owned by the same owner.
The risk is that if the owner of a key is revealed, linking could reveal other transactions
that belonged to the same owner.

| Identitias | Transactions |~

= Counterparty ‘ Public

Mew Privacy Maodel

| Identifies |

11. Calculations

We consider the scenario of an attacker trying to generate an alternate chain faster than
the honest chain. Even if this is accomplished, it does not throw the system open to
arbitrary changes, such as creating value out of thin air or taking money that never
belonged to the attacker. Nodes are not going to accept an invalid transaction as payment,
and honest nodes will never accept a block containing them. An attacker can only try to
change one of his own transactions to take back money he recently spent.

The race between the honest chain and an attacker chain can be characterized as a
Binomial Random Walk. The success event is the honest chain being extended by one
block, increasing its lead by +1, and the failure event is the attacker's chain being
extended by one block, reducing the gap by -1.

The probability of an attacker catching up from a given deficit is analogous to a Gambler's
Ruin problem. Suppose a gambler with unlimited credit starts at a deficit and plays
potentially an infinite number of trials to try to reach breakeven. We can calculate the

9|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

probability he ever reaches breakeven, or that an attacker ever catches up with the honest
chain, as follows [8]:

p = probability an honest node finds the next block
g = probability the attacker finds the next block
gz = probability the attacker will ever catch up from z blocks behind

o= 1 ifp=d|
* g/ py if p>q]

Given our assumption that p > q, the probability drops exponentially as the number of
blocks the attacker has to catch up with increases. With the odds against him, if he doesn't
make a lucky lunge forward early on, his chances become vanishingly small as he falls
further behind.

We now consider how long the recipient of a new transaction needs to wait before being
sufficiently certain the sender can't change the transaction. We assume the sender is an
attacker who wants to make the recipient believe he paid him for a while, then switch it to
pay back to himself after some time has passed. The receiver will be alerted when that
happens, but the sender hopes it will be too late.

The receiver generates a new key pair and gives the public key to the sender shortly
before signing. This prevents the sender from preparing a chain of blocks ahead of time
by working on it continuously until he is lucky enough to get far enough ahead, then
executing the transaction at that moment. Once the transaction is sent, the dishonest
sender starts working in secret on a parallel chain containing an alternate version of his
transaction.

The recipient waits until the transaction has been added to a block and z blocks have
been linked after it. He doesn't know the exact amount of progress the attacker has made,
but assuming the honest blocks took the average expected time per block, the attacker's
potential progress will be a Poisson distribution with expected value:

h::i
p

To get the probability the attacker could still catch up now, we multiply the Poisson density
for each amount of progress he could have made by the probability he could catch up
from that point:

2—‘]‘%_&..{[{;!;}]” oifk<z|
k! [] ifk>z|

+

k=0

10|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

Rearranging to avoid summing the infinite tail of the distribution...

Converting to C code...

#include <math.h>

double AttackerSuccessProbability(double q,

§
I
L3

doukle p = 1.0 - g;

’
doukle lambda = z * (q / p);
double sum = 1.0;

ink 3; k-
for (k = 0; k <= z; k++)

double poisson = exp(-lambda);
for (1 = 1; 1 <= k; i++)
poisson *= lambda / 1i;
sum -= poisson * (1 - pow(q / p,
}

return sum;

4

int z)

= X))

VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

11|Page

Running some results, we can see the probability drop off exponentially with z.

=1.0000000
=0.2045873
=0.0509779
3 P=0.0131722
z=4 P=0.0034552
z=5 P=0.0009137
z=6 P=0.0002428
z=7 P=0.0000647
z=8 P=0.0000173
z=9 P=0.0000046
z=10 P=0.0000012

N-=-0O

A
P
P
P

N NN NOQO
L T

0.1773523
0 P=0.0416605
z=15P=0.0101008
z=20 P=0.0024804
z=25 P=0.0006132
z=30 P=0.0001522
z=35 P=0.0000379
z=40 P=0.0000095
z=45 P=0.0000024
z=50 P=0.0000006

N N N O

0.3

0 P=1.0000000
5P=

1

Solving for P less than 0.1%...

P <0.001
g=0.10 z=5
q=0.15z=8
g=0.20 z=11
g=0.25 z=15
q=0.30 z=24
g=0.35 z=41
q=0.40 z=89
g=0.45 z=340

VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

12|Page

12. Conclusion

We have proposed a system for electronic transactions without relying on trust. We
started with the usual framework of coins made from digital signatures, which provides
strong control of ownership, but is incomplete without a way to prevent double-spending.
To solve this, we proposed a peer-to-peer network using proof-of-work to record a public
history of transactions that quickly becomes computationally impractical for an attacker
to change if honest nodes control a majority of CPU power. The network is robust in its
unstructured simplicity. Nodes work all at once with little coordination. They do not need
to be identified, since messages are not routed to any particular place and only need to
be delivered on a best effort basis. Nodes can leave and rejoin the network at will,
accepting the proof-of-work chain as proof of what happened while they were gone. They
vote with their CPU power, expressing their acceptance of valid blocks by working on
extending them and rejecting invalid blocks by refusing to work on them. Any needed
rules and incentives can be enforced with this consensus mechanism.

13|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

References
[1] W. Dai, "b-money," http://www.weidai.com/bmoney.txt, 1998.

[2] H. Massias, X.S. Avila, and J.-J. Quisquater, "Design of a secure timestamping
service with minimal trust requirements," In 20th Symposium on Information Theory in
the Benelux, May 1999.

[3] S. Haber, W.S. Stornetta, "How to time-stamp a digital document," In Journal of
Cryptology, vol 3, no 2, pages 99-111, 1991.

[4] D. Bayer, S. Haber, W.S. Stornetta, "Improving the efficiency and reliability of digital
time-stamping," In Sequences II: Methods in Communication, Security and Computer
Science, pages 329-334, 1993.

[5] S. Haber, W.S. Stornetta, "Secure names for bit-strings," In Proceedings of the 4th
ACM Conference on Computer and Communications Security, pages 28-35, April 1997.

[6] A. Back, "Hashcash - a denial of service counter-measure,"
http://www.hashcash.org/papers/hashcash.pdf, 2002.

[7] R.C. Merkle, "Protocols for public key cryptosystems," In Proc. 1980 Symposium on
Security and Privacy, IEEE Computer Society, pages 122-133, April 1980.

[8] W. Feller, "An introduction to probability theory and its applications," 1957.
Disclaimer

This document is a repeat and copy of the Bitcoin white paper and does not proport to be
otherwise. The intent of this document is to reiterate the simplicity of the genesis behind
the development of Bitcoin. All others including VOLEREUM is a beneficiary of the
courage and audacity to think outside the box and implement a playing field that is no
longer controlled by the few. However, that process may be near an end as Ethereum
and other copiers are trying their best to curtail the genesis of a new world that tries to
include all and attempts to leave none behind. They are ALL simply copiers with no
unique thoughts and exemplified by E=MCA2.

14|Page
VOLEREUM WHITE PAPER - Based on the Bitcoin Implementation Protocol

